In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair
نویسندگان
چکیده
BACKGROUND Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering. METHODS Twenty-five Swiss Albino mice were used. A 10 x 10 mm cellulose membrane obtained through biosynthesis using Acetobacter xylinum bacteria was implanted into the lumbar subcutaneous tissue of each mouse. The mice were euthanatized at seven, 15, 30, 60, and 90 days, and the membrane and surrounding tissues were collected and examined by histology. RESULTS A mild inflammatory response without foreign body reaction was observed until 30 days post-surgery around the implanted membrane. Polarized microscopy revealed that the membrane remained intact at all evaluation points. Scanning electron microscopy of the cellulose membrane surface showed absence of pores. The in vitro evaluation of the interaction between cells and biomaterial was performed through viability staining analysis of the cells over the biomaterial, which showed that 95% of the mesenchymal stem cells aggregating to the cellulose membrane were alive and that 5% were necrotic. Scanning electron microscopy showed mesenchymal stem cells with normal morphology and attached to the cellulose membrane surface. CONCLUSION The microbial cellulose membrane evaluated was found to be nonresorbable, induced a mild inflammatory response and may prove useful as a scaffold for mesenchymal stem cells.
منابع مشابه
Mathematical Modeling Of Bacterial Cellulose Production By Acetobacter Xylinum Using Rotating Biological Fermentor
Bacterial cellulose (BC) has a basic cellulose structure that gives high purity, high crystalline ability, high mechanical strength, and high water holding capacity. During the last few decades, BC has gained as an important biomaterial because of these unique physical and chemical characteristics. BC is synthesized by Acetobacter xylinum extracellularly in a suitable substrate media. Researche...
متن کاملMicrobial cellulose--the natural power to heal wounds.
Microbial cellulose (MC) synthesized in abundance by Acetobacter xylinum shows vast potential as a novel wound healing system. The high mechanical strength and remarkable physical properties result from the unique nanostructure of the never-dried membrane. This article attempts to briefly summarize the recent developments and applications of MC in the emerging field of novel wound dressings and...
متن کاملSYNTHESIS OF BACTERIAL CELLULOSE BY Acetobacter xylinum sp. USING WATERMELON RIND WASTE FOR BIOCOMPOSITE APPLICATION FADILAH MOHAMED UNIVERSITI MALAYSIA PAHANG v SYNTHESIS OF BACTERIAL CELLULOSE BY Acetobacter xylinum sp. USING WATERMELON RIND WASTE FOR BIOCOMPOSITE APPLICATION FADILAH MOHAMED
Cellulose was the most abundant polymer or polysaccharide that presents as the structural component of the primary cell wall of green plants but also signify for microbial extracellular polymer. The production of cellulose by microorganism such as Acetobacter xylinum sp. was most favored by researchers because the cellulose that produced was extremely pure and had a higher degree of polymerizat...
متن کاملIn vitro synthesis of cellulose II from a cytoplasmic membrane fraction of Acetobacter xylinum.
The cytoplasmic and outer membranes of Acetobacter xylinum (ATCC 53582) were isolated by discontinuous sucrose density ultracentrifugation. Both lysozyme (EC 3.2.1.17) and trypsin (EC 3.4.21.4) were required for efficient crude membrane separation. Primary dehydrogenases and NADH oxidase were used as cytoplasmic membrane markers, and 2-keto-3-deoxyoctulosonic acid was used to identify the outer...
متن کاملIdentification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum.
A second cellulose synthase gene (acsAII) coding for a 175-kDa polypeptide that is similar in size and sequence to the acsAB gene product has been identified in Acetobacter xylinum AY201. Evidence for the presence of this gene was obtained during analysis of A. xylinum mutants in which the acsAB gene was disrupted (I.M. Saxena, K. Kudlicka, K. Okuda, and R.M. Brown, Jr., J. Bacteriol. 176:5735-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta Veterinaria Scandinavica
دوره 51 شماره
صفحات -
تاریخ انتشار 2009